
Saddlepoint Approximations for Generalized Linear Models: A GentleIntroductionBy G.U.H. SEEBER1Leopold-Franzens-Universit�at Innsbruck, AustriaSUMMARYSaddle point approximations to the density of a sum of i.i.d. random variables are introduced via exponentialtilting and an Edgeworth expansion in the conjugate family of distributions. Applications to exponential familiesand generalized linear models are reviewed.Keywords: Higher order asymptotics; Edgeworth expansion; Saddlepoint approximation; Conditional inference;Exponential tilting; Exponential families1 IntroductionIt is almost fourty years that saddlepoint approximations to densities of sums of random variables wereintroduced by Daniels (1954), but it's only recently that this method for constructing large sample ap-proximations �nds greater attention among statisticians. Techniques relying on saddlepoint expansions arereported to be of high accuracy, even when sample sizes are (very) small, making them potentially usefulto applied statisticians. Since the discussion paper by Barndor�-Nielsen and Cox (1979) much literaturehas appeared mainly contributing to higher order asymptotic theory. Davison (1988) developed approx-imations to the conditional densities and distributions of su�cient statistics in generalized linear modelswith canonical link functions, thus emphasizing the relevance of the methods for applied work. The sad-dlepoint approximation to the density of the maximum likelihood estimator in curved exponential familiesadmitting non-canonical link functions is given in Hougaard (1985). Very recently Pierce and Peters (1992)reviewed saddle point methods for exponential families. They emphasized situations envolving discrete data,particularly contingency tables, and presented some real data examples. However, it seems that, at thistime, research on mathematical issues as well as practical experience is still needed to fully understand andappreciate the method and its usefulness for the purposes of data analysis.In this paper I attempt to give a non-rigorous introduction to the subject. Readers interested in formaldetails or an extensive treatment are referred to the books by Barndor�-Nielsen and Cox (1989) or Fieldand Ronchetti (1990). Reid (1988, 1991) provides very concise overviews on the derivation of saddlepointtechniques and their application to statistical inference.2 Exponential Tilting and Saddlepoint ApproximationsLet Y1; : : : ; Yn be i.i.d. random variables with mean � and variance �2, and Sn = Y1 + � � �+ Yn their sum,suitably standardized as Zn = (Sn � n�)=pn�2. We are interested in approximating the density functionof Sn or Zn, respectively. Derivation of both Edgeworth and saddlepoint expansion relies on the cumulantgenerating function K of the Yi-s, i.e. the logarithm of their moment generating function M(t) = E[exp(tYi)].r-th derivatives at 0 of the cumulant generating function K(t) = ln(M(t)) are called cumulants and will bedenoted by �r . Cumulants are related to moments, in particular �1 = � and �2 = �2.1Address for correspondence: Institut f�ur Statistik, Universit�at Innsbruck, Innrain 52, A{6020 Innsbruck, Austria. e-mail:Gilg.Seeber@uibk.ac.at



Formally, Edgeworth series are obtained by expanding the cumulant generating function K in powers of1=pn and inverting the corresponding moment generating function. This results in an approximate densityfZn(z) � '(z) � �1 + 1pn %36 H3(z) + 1n �%424H4(z) + %2372H6(z)�� ; (1)where ' denotes the standard normal density, %r = �r=p�2 are the standardized cumulants. H3(z) = z3�3z,H4(z) = z4 � 6z2 + 3, and H6(z) = z6 � 15z4 + 45z2 � 15 are Hermite polynomials of respective degrees.The 1=pn term adjusts for skewness, while the 1=n term is an adjustment for both skewness and kurtosis.As a simple example consider i.i.d. random variables Y1; Y2; Y3 distributed as exponential with parameter� = p3. The expected value and the variance of their sum equals p3 and 1, respectively. The normalapproximation to the density of S3 deviates considerably from the exact gamma density. The EdgeworthexpansionfS3(s) � '(s� p3) � �107108 + 19(s� p3)2 + 19(s�p3)3 � 7108(s�p3)4 + 1162(s� p3)6� ;certainly means an improvement, but still seems to be less than satisfactory.In general, Edgeworth expansions are reported to be reliable in the center of the distribution for moderatesample sizes. Due to the polynomial factor in (1) the accuracy can be worse in tail areas, where theapproximate density may even become negative. This limits the usefulness of the method, particularlyif one is interested in calculating tail probabilities. One approach to overcome some of the di�culties in�nding an approximation to fSn(s) is to associate, for each s, a distribution, the density of which is accuratelyapproximated at its mean value. Let f(y) be the density of the Yi-s, then we associate with f an exponentialfamily de�ned by f(yj�) = exp(�y �K(�)) � f(y); (2)of which f(y) = f(yj0) is an element. In the theory of large deviations this embedding in a conjugate familyof distributions is known as exponential tilting. Applying this to the density of Sn givesfSn(sj�) = exp(�s� nK(�)) � fSn(s); (3)or fSn(s) = fSn(sj0) = exp(��s+ nK(�)) � fSn(sj�): (4)Now, an approximation to fSn(s) may be obtained from an approximation to fSn(sj�) at any value of �.A suitable choice �̂ is to put s in the `centre' of the resulting distribution by de�ning �̂ = �̂(s) to be itsexpected value, i.e. by solving K 0(�̂) = sn: (5)�̂ is called the saddlepoint. Via an Edgeworth expansion and after some algebra we obtainfSn(s) � 1q2�K 00(�̂) � exp(��̂s+ nK(�̂)); (6)which is called the saddlepoint approximation. The function on the right hand side of (6) does not necessarilyintegrate to 1, so that it may need renormalization by multiplication with a constant factor.If Y1; : : : ; Yn are exponentially distributed with parameter �, then K(t) = ln(�=(�� t)) and �̂ = ��n=s.Applying (6) results in fSn(s) = 1p2�n1�n exp(n) � yn�1�n exp(�y�);
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Figure 1: Exact density and saddlepoint approximation (solid line), normal (dotted line)and Edgeworth approximation (dashed line) to an exponential distribution with parameter� = p3.which, after renormalization, is the exact gamma distribution of Sn. The saddlepoint approximation isknown to be exact for the normal, gamma, and inverse Gaussian distributions (being the only univariatedistributions, for which this is true). Figure 1 exhibits approximate and exact densities for the examplegiven above.There is a di�erent derivation of the saddlepoint approximation using techniques from complex analysis:By the Fourier inversion theorem (see, e.g., Grimmett and Stirzaker (1982, p. 106)) we havefSn(s) = 12� � Z 1�1 exp(�its) �M(it)n dt; (7)where i = p�1. The idea is to choose the path of integration through a point in the complex plane that, inits neighbourhood, allows accurate approximation of the integral in (7). This point is seen to be the solutionof (5), which is (under some regularity conditions, of course) unique, real and a saddlepoint of the complexfunction K(v + iw) � (v + iw)s. This provides both new insights and justi�es application of the methodfor sums of discrete random variables, as long as their probability functions can be regarded continuousfunctions of a real variable.If, for instance, Y is distributed as binomial with parameters n and �, then fB(yjn; �) = �(n+1)=(�(y+1)�(n � y + 1)) � �y(1 � �)(n�y) is a continuous function on (0; n). The cumulant generating function isK(t) = ln(1� � + � exp(t)), hence giving a saddlepoint�̂ = ln � yn� y. �1� � � :Note that there does not exist a saddlepoint for y = 0; n. Using (6) we obtainfB(yjn; �) � 1p2� nn+1yy+1=2(n� y)n�y+1=2 � �y(1� �)n�y;
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Figure 2: Exact probability function (solid line), saddlepoint (dashed line) and normalapproximation (dotted line) to a binomial distribution with parameters n = 10 and � =0:2.which di�ers from an approximation obtained by Stirling's formula by a factor of n=py(n� y).To obtain tail probabilities the saddlepoint approximation can be integrated, though this is not an easytask. Daniels (1987) provides FSn(s) � �(r) + '(r) � �1r � 1v� ; (8)r = sign(�̂)q2n(�K(�̂) + �̂y=n);v = �̂qnK00(�̂);which is known as the Lugannani and Rice (1980) formula. � denotes the standard normal distributionfunction. (8) is regarded as a highly accurate approximation, except in a neighbourhood of r = 0, see Reid(1991) and the references therein.3 Statistical ApplicationsIn the context of statistical modelling, particularly if a likelihood approach is adopted, the distribution ofthe maximum likelihood estimator is of special importance. Consider the case of n not necessarily scalar,i.i.d. random variables Yi having an exponential family densityfY (yj#) = exp(#0t(y)� b(#)� c(y));where t(Y ) = (t1(Y ); : : : ; tk(Y ))0 is the minimal su�cient statistic and # the canonical parameter. LetS = t(Y1) + � � �+ t(Yn), then fT (sj#) = exp(#0s � nb(#)� h(s)), say, i.e. S is distributed according to anexponential family law. Typically, the function h(s) is di�cult to obtain. However, applying the saddlepoint



approximation (6) to exp(�h(s)) leads to an expression, which does not involve h(s),fS(s) � (2�)�k=2 qjnb00(#̂)j exp h(#� #̂)0t � n(b(#)� b(#̂))i ; (9)which allows derivation of a formula for the approximate density of #̂ = #̂(s),f�(#̂j#) � cqjj(#̂)j Lt(#)Lt(#̂) ; (10)where Lt is the likelihood function of Y1; : : : ; Yn in terms of t and j denotes the Jacobian @2=(@#0@#) b(#)j#=#̂of the transformation that maps t to #̂, i.e. the information matrix evaluated at the maximum likelihoodestimate. c is a suitably chosen renormalizing constant. (10) is sometimes called the Barndor�-Nielsenapproximation, which also provides a valid approximation for models outside the exponential family.Introducing a not necessarily linear `regression' function �(�) that maps regression parameters � toexpected values of the Yi-s, and, a fortiori, to canonical parameters #, thus restricting # to be element ofa smooth subset of the canonical parameter space, de�nes a curved exponential family model. This is notan exponential family model, if, e.g., it is speci�ed by a non-canonical link function in a GLM context.Hougaard (1985) derives a formula for the saddlepoint approximation for the resulting density function,which I do not reproduce here. If the regression function is de�ned via a canonical link, formula (9) may beapplied.For a one parameter exponential family model the distribution function of the maximum likelihoodestimator for the canonical parameter is easily calculated using the Lugannani and Rice formula, which inthis case has exactly the same structure as (8), butr = sign(#̂� #)q2 � [ln(L(#̂)=L(#))];v = (#̂� #) �qj(#̂)are the signed square root of the likelihood ratio statistic and the standardized maximum likelihood estimate,respectively. For non-canonical parameters or other models see Fraser (1990) and the references cited there.In the multiparameter case, if there is a parameter # of interest and a nuisance parameter � and thedata can be split into components S1 and S2, where S2 is su�cient for �, then inference on # can be basedon the conditional likelihood Ls1js2(#). A double saddlepoint approximation to its logarithm, obtained bycomputing the ratio of saddlepoint approximations to the joint density of (S1; S2) and the marginal densityof S2, is given byln(Ls1js2(#)) � ln[L(s1;s2)(#; �̂(#))] + 12 ln ����� @2@� 0@� ln[L(s1;s2)(#; �)j#;�̂(#)]���� ; (11)where �̂(#) maximizes the likelihood function for given #. ln(L(s1;s2)(#; �̂(#)) is the pro�le (log-) likelihoodfor the parameter of interest, (11) therefore suggest one of several ways to modify the pro�le likelihood asto achieve more desireable distributional properties. Davison (1988) shows that approximate conditionalinference for regression and dispersion parameters in generalized linear models involving the normal, gammaand inverse Gaussian distributions based on (11) may be performed using standard statistical packages suchas GLIM.Fraser (1990) suggest that (11) may be used in conjunction with the Lugannani and Rice formula forthe distribution of the maximum likelihood estimate, but see also Pierce and Peters (1992).
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