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I. INTRODUCTICN AND SUMMARY

This paper attempts to give an introduction to two approaches
of stochastic modelling of social processes: Semi Markov processes
and campeting risks models.

The first one has been widely used in mathematical sociology,
at Jeast implicitly. Our presentation is, however, more general,
in that we do not postulate any assumptions about the process be—
sides the semi Markov property. Section II.A briefly reports some
basic definitions and features concerning semi Markov processes.
Nonparametric maximm likelihood estimators for the initial distri-
bution and the transition matrix are presented in section I1II.B.

Models of campeting risks have been developed by biostatisti-
cians and can be interpreted as mechanisms governing special semi
Markov processes. Most of the campeting risks literature, however,
uses the concept of latent sojour times, each associated with
STOCHASTIC MODELLING Copyright © 1984 by Academic Press, Inc.

OF SOCIAL PROCESSES 155 All rights of reproduction in any form. reserved.
ISBN 0-12-215490-8



156 GILG U. H. SEEBER

a specific cause of termination of the actual, observable sojoufn
time, which is supposed to be the minimum of the latent times. Se-
riocus problems of identifiability arise. OQur discussion in chapter
IIT confines to a concise presentation of basic properties and
prcblems of competing risks models. Cause specific hazard rates
are proposed as constructs, which allow statistical inference
without possibly restrictive assumptions.

Chapter IV collects references to the literature. We do not
attempt to give a camplete biblicgraphy, but it is hoped, the
reader will find the books or articles for his particular needs.

Finally, we apply save of the models to a large data set of
job histories. Using the semi Markov model a transition matrix is
estimated and found to be a useful summary statistic at least,
reflecting scme of the main paths of occupational mobility. In a
second practical example a campeting risks model is used to
assess the effect of an employee's education to his chance of
advancement to a higher position.

The methods proposed in this paper are no new things, but, as
far as we know, have not been applied by sociologists. Their use—
fulness outside biostatistics and reliability theory has to be
proven and we hope, that one or the other reader is encouraged to

proceed in this way.
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IT. SEMI MARKCV PROCESSES
A. Basic Theory

Suppose we have a non empty but finite set X of possible
states and a sequence (Xn) nel of random elements taking values in
X. Furthermore, let (Tn) neN be a sequence of nonnegative random
variables ,1 called sojourn times. For all neN we define

n
.= EIT {1
B K )
and
t(t} = T + max{n; neN and Tngt}. (2)
The stochastic process (X({t)} £50 with
X(t) = Xr(t) {(3)

is calied a semi Markov process if’

PIX g =¥ Tost [ XX e X T peen D) =

P{Xn+‘l =Y Tn =t | Xn} (4)
and

these prcbabilities are independent of n.

For illustration consider an individual's job history. A typo-
logy of working positions within a firm or even a national econamy

may yield a state space X. The sequence of positions held by one

1
(Xn)ni-:N and (Tn)neﬂv originate from the same probability

space, (Q,%L,P) say.
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person is caommonly regarded as the realization of a (stationary)
Markov process, i.e. the probability of changing to a certain po-
sition only depends on the current state and the destination. A
generalization of this concept involves the times spent in each
position by means of conditional probabilities

= = = 5
ny(t)‘ P(T <t [ X 4 =Y X =x} (3
of the sojourn times Tn. Note that ny(t) does not depend on n!
Figure 1 shows a typical trajectory of such a process.
Now let Q(t) = (%(y(t))x,yax' where

<t | x =x} (6)

QXY(t) - P{xn+1 B n

be the matrix of transition probabilities (the semi Markov matrix).
If we define

Pyy = im0 (8 , (7
then we have
g (t)
= i . 8
ny(t) - ; if pxy'# o (8)

It is sometimes convenient to define

{o ifO<t <1
F_{t) = , if p__ = O. (9)
xy 1 if t > 1 xy

tv

It follows, that ny is a proper distribution in any case. If,
for a state x

p.. =0 for all yeX , (10)
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FIGURE 1., Trajectory of a semi Markov process.
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then X is called absorbing. In this case, the prcbability of leaw
ing x before or at time t

P (t) = P{Trl <t | X = x}

nooQ_(t)
yex Y

T op F (t) 1

is identical O (for all t).

A semi Markov process is campletely characterized either by
the matrix of transition probabilities Q(t) and the vector
It = (1‘[X)XEX of its initial distribution or by the conditional
distributions ny(t) of the sojourn times, the probabilities pxy

of transitions from x to y, and I.

The rest of this section introduces some generalizations of
concepts used in the statistical analysis of single sojourn times.
For mathematical convenience only, we assume all distributions
Qxy(t) to be absolutely continucus, i.e. having a density with
respect to Lebesgue measure.

First consider the hazard rates

Moy (B} = Ty

P{t<T <t+st, X . = y|T >t, X = x}
At ‘ (12)

which may be interpreted as the instantanecus risk of leaving
state x to state y at time t, provided that no transition has
occured up to t. Clearly we have

" P{t<T <t+at|T 2t,X =x}
AE4O AL

Aty =1 A (B) 13)
x yveX 4 (
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i.e. the "destination specific" hazard rates )\Xy(t) add up to the
"overall" hazard rate for leaving state x.

3 Let

S (t) =P(T_ >t | X = x}

1-P (t) | (14)

be the survival functicon for state x and Q;cy(t) the density of
t), i.e.
Qxy( by

Oy () = f:; Q) w au (15)

| then the following identities hold

Sy ) {16)
ey ® 7 TS
t
S, (t) = exp (-fo)\x(u) du) {17}
i [] —_— - t
' Qxy(t) = lxy(t) . Toexp {=f] A, (w) du). {18}

zeX

An observation (x;,tg,...X 4.t _,,X ) where x_ is absorbing
is called camplete. It's probability is

= = = = = = 19
P{X1_X1 r T’l t‘l re=s 'Xs—'l_xs—1 ’Ts—‘l ts-—1 'XS xs} (19)

| =T 0 o ()0 (te_q) -

x
s-1"s

If an absorbing state has not been reached, we only may re-

cord a censored chservation (x.1 ,t.] ron- ,xs,t S) , for which
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P{x1=x1 TSt ,xs=xs,Ts>tS} =
I - Q! {t.) ... o! (t__,) -8, (). (20)
x1 x1x2 1 xs—’lxs -1 xs s

Hence, assuming an independent censoring mechanism, the like-—
1lihood function for independent. cbservations is (proportional to)
the product of terms of the form (19) and (20). Note that, disre-
garding initial probabilities, the likelihood function can be
written entirely in terms of the hazard rates ?\Xy(t) , c.f. (18,

Finally we remark, that under quite general conditions there
exist mutually independent, nonnegative random variables
ny(x,yex) with distribution functions

_ _ _t
ny(t) =1 - exp( foxxy(u) du) , (21)
such that
P (t) = P{IIL‘i_n{ny; yeX} < t} (22)
and
= /& . .
Qxy(t) = fo ny(u) z];x (1—ze(u)) du, (23)
7ty

where G}'{y(t) is the density of ny(t) . {22} may be interpreted
as a mechanism governing the semi Markov process. A slightly gene-
ralized situation is treated in chapter III.
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B. Nonparametric Estimation.

In this section we describe, without going into too great de-
tail, - non parametric meximum likelihood estimators for the ini-
tial distribution and the transition matrix Qxy(t) of a semi
Markov process. We do not require any assumptions about the under-
lying distributions of the sojourn times, in particular they need
not be continuous. However, in rearranging the likelihood function
to a form suitable for maximization, our presentation assumes

continuity.

Without loss of generality, let X = {1,...,s}. Fram (19-20)
it follows, that the likelihocd of N independent cbservaticns
factors into three products

S 5 b=
L= 1 a_ - I b__ - 1Ic., (24)
x=1 = x,v=1 e ¥

where each a, is of the form (Hx)lx, lX being the number of ini-
tial entries in state x. The first product may be maximized sepa-—
rately of the remaining parts and leads to

. 1
I =N—x, x=1,...,8 (25)

X
as ML - estimator for the initial distribution II.
Fach b is a product of terms Q' (t), and S, is a preoduct of
terms sx(t) , where the t's are cbserved or censored sojourn times,
respectively. The terms c, make an explicit solution of the like=
lihood difficult to determine, so we use the distribution func-
tions ny(t) fram (21) for reparametrization. Defining

ny(t) =1- ny(t) (26)



164 GILG U. H. SEEBER

to be the survivorship function corresponding to G ey (t) it follows
that

s
%cy(t) = ny(t) . 221 (1 - G, (t))
2ty
S "
= - ny(t) e sz(t) (27)
z#y
and
s (t) = P{Tn >t | X, = x}
8
= I P{¥_ >t}
y=1
5
= I (1-G__ {t))
=1 ¥
=]
= I H_(t) (28)
=1 ¥

This allows to rearrange the likelihood function to be

~

s s
L= T a, - 1 L ’ (29)
=1 = x,v=1 =Y
where
k mxyi s Mzi
L = 1 - H' (t. = I H t. (30) -
Xy iz1[ ey (1) z=oxz(l) )
z#y
t1<...<tk are the distinct sojourn times in x
mxyi is the number of transitions from x into vy with sojourn
time ti’ and
s is the number of censored cbservations in state x with

time t, .
i
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To find the ML-estimator for HXy(t) we only have to consider
(30). ITts solution must be a discrete distribution with mass

points only at t ,...,H{. New, let

1

s ] k
N .=m_,+ I m_, + =T Tom_ . (31}
Xyl X001 z=y fo.al 7=0 j=i+] Xz}

be the mmber of individuals in state x which have not moven into
a new state bhefore time ti, i.e. are exposed to the risk of leav-
ing state x. (The sum in the middle of formula (31) allows dis-—

tributions underlying the sojourn times, which are not continuous

as well.)
Define m
' § i
1 3 N if nyi # 0
u_. = * (32)
xyi
1 otherwise

(the estimated conditional probability of not leaving state x into
state y at time ti)  then the ML-estimator for ny(ti) is obtained
by

~ i
H (t.)=1mn uwu_. . {33)
xy ATy Sl
Using
ny(ti) = ny(ti—i) - ny(ti) {34)
and
v—1 s i-1
v .= (1=-u_.}+« T w_, - I T u_._ {35)
xyi wKyi g 2xi z=1 3=t XZ]
vields to .
= . 36
Pyy I Ve {36)

J=1
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and
- - k .
(t) =p.. - ¢ wv_. for all t such that (37)
ey =it

ic ML~estimators for p__ and Q__ (t). .
tift<ti +1 @s non parametric ey

xy

If the largest sojourn time in state x is censored, then

s .

(38)
z Py, < 1.
z=1
In this case, f)xy may be normalized by setting
~ P
p ==X (39)
Xy 5 .
X
z=1 XZ

If we have as a special case only two states, i.e. X = {1,2}, and

o, = 1,
Py = 1, and
state 2 is absorbing, (40)

then éjz(t) reduces to the product-limit estimator.

Appraximate variances/covariances of the above estimators are
available, see the biblicgraphical remarks.
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1II. COMPETING RISKS
A. Potential Sojourn Times

Consider the case with state space X = {0,1,...,m}, where O
is transient and 1,...,m are absorbing states. Every individual is
supposed to enter the process in state O. From (21-22) we know,
that there exist under certain regularity conditions mutually in-
dependent non-negative randam variables Y1 peee 'Ym such that

P(t) = Plmin{Y,,... ¥ }<t}. (41)

(Note, that we have dropped the subscript O!) Yyree. Y, may be
interpreted as potential or latent sojourn times corresponding to
specific causes terminating state 0, namely the transitions to one
of the states 1,...,m.

In this chapter we are concerned with a slightly more general
situation: Given m not necessarily independent non-negative ran—
dcm variables Y1 P ,Ym we can observe their identified minirmm,

i.e.
T = min{Y,,... ,Ym} (42)
and
3 ifT=Y.
J= J (43)
e} otherwise,

where we assume that
P{Yi = Yj} =0 if i#y . (44)
In survival analysis temminology this situation is called

"competing risks": With each variable Yj there is associated a
specific risk or cause of death. The reader should be warned, how—
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ever, that the (marginal) distribution of each Yj depends in gene-
ral on the risks acting simultaneously; e.g. if one cause is re-—
moved, the distribution of Yj need not remain the same as before.

B. Identifiability

One of the basic problems in the theory of campeting risks
is the following: Does the joint distribution of the identified
minimum (T',J) uniquely determine the joint distribution of the
Y.'s?

1

If Y1 PR ,Ym are mutually independent the answer is "yes":

for the marignal distribution function Gi(t) of Yi we have

0! (w

i
1 - exp(—fo-:-g*(ﬁ")“ du)

G; (B

1 - exp(-sia () aw, (45)

where Qi(t) is the joint distribution function of (T,J}, sometimes
called incidence function, and
m
s{t) =1- 1 Q.(t) , (46)
3=1 7
as we had before. (As a remark we note, that, in this case, the
cause specific hazard function Ai is identical to the (marginal)
hazard function of the sojourn time Yi') The joint distribution
function of Y1 PR 'Ym is simply the product of the marginal distri-

bution functions.

Now, if the Yi's are dependent, then there exist mutually in-
dependent random variables having an identified minimmm with dis-
tribution function identical to Qi(t) ; a result which is not sur-
prising in view of formulae (21-23}, It follows, that in general
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the dependent and the independent model are indistinguishable by
means of the observable quantities (T,J).

In order to avoid any complications a large portion of the
campeting risks literature assumes independence of the potential
sojourn times. Other possibilities to circumvent the problem of
identifiability include restriction to certain parametric families
or postulation of proportiocnal hazards, i.e. to assume that there
exist constants =1 between O and 1 such that

AlE) = v a(t) = - (jz)\j () . {47)
In this case we have
F,(8) = PIY,st[T = 1}
= P{T<t} = P(t) (48)
and
1 -G (t) = 1 - expl-c, - /DA du)

(1 -p))©d

It

syi, (49)

It can be shown, that =5 is equal to P;r the expected proportion
of transition to state i / deaths fram cause i.

The assumptions one is likely to undexrly his investigations

depends on a careful inspection of the real world phencmena to be
analyzed.
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C. Estimation

As we have seen in the discussion on semi Markov processes;
the incidence function (;_)i {(t), hence the destination or cause spe-
cific hazard rates Ai(t) and the survival function S(t) are esti-
mable whether or not the potential sojourn times are independent.
For instance, in this situation the nonparametric model discussed

in section II. B is applicable as well.

Recall that the likelihood function can be written entirely in
terms of the hazard rates )\i(t) . Suppose we have independent ob-
servations (tn,ﬁn,'jn) , n=1,...,N, where tn is the cbserved time,

(Sn a censoring indicator with

if £ is a canplete cbservation
5—1 T {(50)

n O if t is a censcored cbservation
n

and jn is the destination or cause (if an = 1), then

N cSn
L= 10 A, (t) ©8(t)
— J n
n=1 n
‘Sn m t
= 1 |a. () T exp(=S “A,(u) du)| . (51)
5 L o'i
n=1 n i=1
Using
1 if § =i
_ In (52)
Cni .
(o] otherwise

we rearrange (51} to

m [
oA, (tn)
i=1

[
It

™ t
S H exp(—foki(u) du)
i=1

N
il
n=1

n

m N 6. Z_.
noni e ; (53
121 [£1Ai(tn) exp (=/ 3, (W) du)l )
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Hence the likelihood factors into separate components for
each cause and, furthemore, the camponent for cause i may be ob-
tained by regarding all sojourn times terminated by other causes
than i as censored. As one important result we find, that stati-
stical inference on the hazard function Ai(t) can be carried out
by means of the methods used in the analysis of univariate so-
journ times,

Covariates are easily incorporated in the model by considering
all prechabilities to be conditional on a vector z of concamitant
variables, e.q.

P{t<T<t+At,J=1i[T>t,z}

Ap(Eiz) = Lm0 AL (54)

Again, a variety of standard models and methods are available to
assess the relationship between the cause specific hazard rates
and covariates, including proportional hazards and accelerated
failure time models.

In our analysis of the labour market problem we have used a
fully parametric proportional hazards model with rates stemming
from a Weibull distribution, i.e. we have assumed

’ oni-1 k
)\i(t;z.],...,zk) = - t . exp(Boi + 151811 zl) . (55)

Using GLIM we have obtained maximum likelihood estimates for
the parameters. Standard asymptotic theory may be applied for
significance testing.



172 GILG U. H. SEEBER
IvV. BIBLIOGRAPHICAL REMARKS

In our presentation of semi Markov processes we have followed
Nollau (1981}. The nonparametric model described in section II.B
was developed by Lagakos, Saumner and Zelen (1978), where approxi-
mate variances/covariances of the estimates may be found. Gill
(1980) proves uniform consistency and weak convergence under mild
censoring conditions. A generalization allowing incamplete cbser—
vations of destinations as well is described in Dinse (1982).

Chapters on campeting risks models are contained in the books
of Kalbfleisch and Prentice (1980) and Elandt—Johnson and Johnson
(1980) . The first reference concentrates on cause specific hazard
rates, the second book treats identifiability questions and pro—
porticnal hazard models in more detail. Review articles include
David and Moeschberger (1976), Gail {1975}, Elandt-Johnson (1976),
and Prentice et al. (1978). Parametric competing risks models are
extensively studied in the monograph of David and Moeschberger
(1978) . An early reference is Cox (1959).

The identifiability problem is treated in Elandt-Johnson
(1981), Miller (1977), Nadas (1971), and Tsiatis (1975). Lang~
berg, Proschan and Quinzi (1978) describe the transformation of
a dependent model into an independent one, preserving essential
features. Basu and Ghosh (1978) examine various multivariate
distributions for identifiability knowing the distribution of
the identified minimum, including bivariate and trivariate nor-
mal distributicns, the bivariate exponential distribution of
Marshall and Olkin (1967) etc.

Estimation in independent models is considered by Boardman
and Kendell (1970) and Herman and Patell (1971) among others.
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Elandt-Johnson (1976), Langberg, Proschan and Quinzi (1981) and
Moeschberger (1974) treat dependent sojourn times. The subject in
a semi Markov process context is mentioned by Aalen (1976).

For the study of models incorporating concomitant information
we refer to Beck (1979), Holt (1978}, Lagakos (1978), and Pren-
tice, Williams and Peterson (1981). Elandt-Johnson (1¢78) and N&-
das (1970) consider proportional hazard models.

Two further topics we have not mentioned may be of interest:
Nelson (1970, 1972) developes hazard plotting techniques for
multivariate sojourn times and Johnson and Koch (1978) apply line-

ar model techniques to grouped, i.e. interval censored times.

Begides the references cited, there is, naturally, a lot of
literature concerning the statistical analysis of single sojourn
times, which may be helpful in working with competing risks pro-
blems. A book on that subject written for (mathematical) sociolo-
gists is Coleman (1981). We have followed Aitkin and Clayton (1981)
in fitting the Weibull models by use of GLIM.

V. APPLICATIONS TO CCCUPATIONAL MOBILITY

A. Stochastic Models for Occupational Careers.

This part of the paper applies same of the statistical mo—
dels discussed earlier to problems of intragenerational occupatio=
nal mobility. Qur concern is to assess certain features of typi-
cal careers or job histories using a stochastic process approach.
As a job history we consider the sequence of occupational posi-
tions a person held during his life. One way to find out typical

carcers is to assume an individual job history to be the realiza-
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tion of a stationary Markov process. Inspection of the estimated
transition matrix could give insight about the main paths of occu-
pational mobility.

Our approach is samewhat more general in that we use a semi
Markov representation for job histories for two reasons: First,
the times spent in certain positions may follow specific patterms.
Within the primary sector of labour market there may exist typi-
cal service times preceding an advancement to a position of higher
qualification, whereas in the secondary sector changes in job
status may occur rather arbitrarily. The second reason is of
technical significance: available data on job histories typically
include incamplete observations, up to date records of camplete
careers are not at all easy to cobtain., Semi Markov models can be
adapted to allow censoring. If one is mainly interested in transi-
tion probabilities the nonparametric model of section II. B is re-
camended. Moreover, if little is khown about the distributional
shape of the sojourn times, the nonparametric estimates provided
by that model give first insights. This model is used for the
analysis of the data described in section V. B below.

The second practical example illustrates the use of a compe-
ting risks model to assess the impact of an employee's education
to his chance of prawotion to a higher position.

For an extensive treatment on stochastic modelling of social
processes we refer to the book by Bartholamew (1973). Stewman
(1976) reviews Markov models for careers. The work of
Michael J. Picre on mohility chains and labour market segmentation
we feel gives a thorough sociological background for our analyses,
c.f. Piore (1978} for instance.
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B. The Data.

Our data originate from an interrogation conducted by
"Osterreichisches Statistisches Zentralamt" in Septamber 1972,
where about eighty thousand Austrian inhabitants were asked about
sane features of their ccoupational careers. Each period of an
individual job history should be described by three characteri-~
stics with respect tc an economic typology of enterprises, a typo-
logy of occupations and the qualification of the working position.
Each change in one of the characteristics was taken as the beginn-
ing of a new period for which the year had to be recorded.

For our purposes we have extracted all those males fram the
sample, who entered their occupational career between 1955 and
1970. This lead to a (sub-) sample of 9345 pecple.

Our main interest lies in the qualification of the working po-
sition held by each person.. The corresponding variable, briefly

called “status” subsequent:ly, takes the following values and
meanings:

Table 1: Outcomes of the variable "status"
(For details we refer to OStZ (1974))

working as an apprentice

working as an unskilled worker

working as a skilled worker

working as an employee with easy activities
working as an employee with medium activities
working as an employee with gqualified activities
working as an employee with managing activities
working as an entrepreneur

assisting (without working contract)

O @ & N & b b W N R

Ly

unknown
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C. Analysis of Changes in Status

We now apply the nonparametric semi Markov model described
in section IT. B to analyze the job histories with respect to the
variable "status". Note, that the beginning of a new period in
cne's occupational career is constituted by a change in cne of
the three characterizing variables, so it may happen that there
is no change in the "status". It follows, that the probability of
moving to a state identical to the current state need not be zero,

Our analysis is based on 9345 job histories with 27814 sojourn
times, of which 9345 are right censored. (We do not have any can-
plete job histories). We first campute the maximmm likelihood es—
timates for the initial distribution, which are just the propor-
tions entering each state.

Table 2; Distribution Il on initial states with respect to
variable "status".

State Fregquency Proportion
1 apprentice 5417 0.580
2 unskilled worker 1407 0.151
3 skilled worker 127 0.014
4 employee/easy activities 358 0.038
5 employee/medium activities 489 C.052
6 employee/qualified activities 378 G.040
7 employee/managing activities 86 0.010
8 entrepreneur 101 0.011
9 assisting 879 0.094

10 unknown 103 0.011
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Next we record the frequencies of transitions for two purpo—
ses. First, to get an impression about how often each kind of
transition occurs, Second to compare an estimation of the
transition matrix by singly calculating the proportions of observ—
ed transiticns in each row (i.e. disregarding censored cbserva—
tions) to the estimates cbtained by the semi Markov model:

Table 3: Absolute frequencies of transitions.

State

State 1 2 3 4 5 6 7 8 9 io
1 160 451 3604 390 100 14 3 12 43 372
2 100 2306 337 257 71 16 6 203 4% 580
3 18 653 714 316 244 116 25 218 32 11i8
4 3 74 34 295 301 93 30 47 6 202
5 1 13 10 30 255 245 76 53 1 70
6 1 4 8 4 24 164 148 76 2 31
7 1 2 1 o 7 6 61 34 0 5
8 o) 42 14 7 11 10 12 29 o] 3
9 43 268 19 21 8 2 o 248 7 180
10 z1 759 1006 298 170 76 22 42 141 124

One further descriptive statistics should be computed for
diagnostic reasons: for each state the pattern of censcred sojourn
times. Striking irregularities call for careful inspection of the
data and the underlying model. Since we did not f£ind any conspi-
ciousness we drop the reproduction here.

Now we may calculate the matrix of transition probabilities:
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The attentive reader may have cbserved, that the entries in
each row do not sum up to one, as it is necessarily the case for
a stochastic matrix. This occured because in each state the lar—

gest cbserved scjourn times are censored.

For state 8 (working as an entrepreneur) the sum of the row

elements equals only 0.266. Inspection of the tables 2 and 3
leads to an explanation: We have 1034 initial entries or transi-

tion to state 8 fram distinct states but only 128 transition from
state 8, which is not at all surprising, since in Austria entre~
preneurs rarely loose their position. It follows that most of the

1f cne prefers to report a stochastic matrix as transition
matrix, he may cbtain this simply by normalization. (Table 5)

sojourn times recorded in state 8 must be censored.

Since we have a very large number of observed sojourn times
we may apply asymptotic theory for significance testing of transi~

tion probabilities. No one will wonder, that, in view of the

enormous sample size, about three quarters of the entries are

As is intrinsic to Austria's educational system,a majority of

the beginners seek for a position as apprentice. Nevertheless, a
portion of 10 % start their occupational life as unskilled wor-

significantly different fram O at the 1 % level.

ibly, scme

Table 6 contains the estimated conditional survival function

kers. Having finished apprenticeship, most of the young pecple
‘will be able to find jcbs as skilled workers. A minority of about
10 % has to accept positioné as unskilled workers. Poss

of these have not been successful as apprentices.

for apprentices becaming skilled workers (‘I-F.I 3(t) in our nota-

tion). It is easily verified that apprenticeship usually lasts

w
—
jad}
o
O
=
oy
¥
2}
[+
S
Z n
= i
™ 4]
w >
S 5
&
: 8
2 8
g 5
=
0 ¥
s 8
wn
(erot0) (poo‘o} (gro*o) (soo-0) (sootw) (goo*0) (go0°0) (or0°0) (¢loto)  {ZooTO)
£goo 9£0°0 £90°0 0z0°0 LP0 0 T20°0 907 "0 z8z o 95z 0 900°0 or
(c10°0) (E00 0} (0Z0°0} (zoo*0) (goo o) (soo0°0) (500°0) (810°0) {(900°0)
8410 9000 IgE 0 -0 2000 0r0"0 £20°0 0200 £62°0 8€0°0 6
(zoo o) (oro-0} (£zo°0) (oroco) (go00°0} (pO0°0) (500°0) (g£0°0)
£00°0 "0 $¥0°0 Zr0°0 pzo-0 LTO"0 600°0 2100 6070 0 8
{oro*o) (z£0°0)  (gzo°0) (0T0°0} (£00°0) (coo0) (£00°0} (Z200°0}
0Z0°'0 "0 ST 0 6770 1700 81070 ‘0 £00°C 8000 Z00°0 /
(coo*0) (ro0°0) (910°0) (pPO Q) (0Z0°0) (900°0) (zoo"c) (goo°0) (zoo*o) (100°0)}
0£0°0 z00°0 9zr°0 QL0 50z "0 62070 5000 800°0 PO0O ‘0 1000 9
{so0*0} (rco*o) (gooto} (oco'0) (g8rot0) (s10°0) (500'0) {zoo'0) (co0 0} (10070}
SO0 700°0 150°0 psr o 9570 6020 geoto £00°0 600°0 [00°0 [
(goo*0) (100°0) (800'0) (so0°0) (8000} (§1G6°0) (2ro'0) (poo'0) (Zro'o) ([00°0)
60I°0 £00°0 8800 $Z0°0 T£0°0 05z°0 00z "0 1zo-o 55070 [00°0 4
(so00*0} (roo*o) (goo'c) (zoo*0) (g00°0) (s00*0) (900°0) (/00°0) (900°0) (7100°0)
S67°0 9000 £80°0 8000 ££0"0 £90°0C Z80°0 zZer-o P10 P00°0 £
(500°0) (po0°0) (€10°0) (10070} (100°0) (zoo'Q) (90070} (so0°Q} (Zroto) (eco°0)
BIrto £roto 010 T00°0 £00°0 9700 £90°0 PLOO 8IS 0 810°0 b4
(oror0} (zooro) (p00°0) (000°0} (700°0) (500°0) (500 0} (S10°0Q) (600°0) (£00°0)
8rr-o £00°0 806°0 100°0 £00°0 £20°0 Z90°'0 8690 FOT°0 0200 H
or 6 8 V4 9 g 4 £ z 4 e3L31%5
93P38

*5319y0oRIq UTYITM

poionb aie 5I0II> PIEDURIS POIPWTISO {SOTIIITqPQoId UOTITSURI] PIIBWETISD JO «mx& XTIFEW *p 9TqEI




Matrix of transition probabilities adjusted for censoring. Values less than

Table 5

0.01 have been dropped for readability. Entries not significantly different

from O in Table 4 are gquoted within brackets.

State

i0

State

0.12

0.01
0.01
0.01

{0.01)
0.11

0.02
0.02

0.06
0.07
0.10
0.26
0.03

0.65
0.08
0.21

0.10
0.56
0.19

0.02
0.02

0.12

0.25
0.14
0.06
0.04
{c.05)
(o.01)

0.0l 0.11

0.04
0.09
0.33
0.29
(0.05)
{0.08)

0.09
0.32
0.28
0.04
(0.04)
(0.06)
0.0l

0.06

0.03

0.03

0,07
0.01
(0.01)
(0.02)

0.07
0.18

0.21

0.01
(0.01}
{0.01)}

0.07
0.02

0.43
0.46
(0.16)

(0.01)

0.37

(0.01)

7

0.17
0.40

(0.04)
0.02

0.41

0.01

0,31

0.04

0.19

..0.0%

- 0.04

0.0! 0.26 0.29 0.11 0.07 0.05 0.02

10

L 0.07
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Table 6: Estimated conditional survival function for apprentices
becoming skilled workers.

T s(T) SE(S(T)}) o] 5(T) 1
1 .998 . 001 I - B . S
2z .993 . 001 I . .

3 .974 . 003 I . - 5T
4 .524 .01z I . - 8 I
5 .233 .018 I 5. . . T
6 .163 .019 I . - . I
7 124 .19 I . . . I
8 . 109 .019 I . . I
9 . 084 .019 I . . . I
10 .073 .018 I - . . I
11 .068 .018 I . . . I
12 .055 .018 Is . . I
i3 .044 .017 Irs . . . I
14 .034 .016 Is - I
15 .014 .013 IS - - I
16 .04 .013 Is . . . I
17 .014 .013 Is . . . I

At this point it should be noted, that these results, al-
though predictive in nature, need not be valid in the eighties.

Today, it can be difficult to find a place as apprentice, and,

furthermore, successfully having finished apprenticeship is not

at all a garantee for a position as a skilled worker.

If an ungkilled worker changes his position he is likely to

labour as an unskilled worker again, although a minority can ad-

vance to positions as skilled workers or employees. For several

reasons it can be claimed, that this minority mainly consists of

former skilled workers. Using the Markov approach an answer can

only be given by suitably altering the state space. A second mino—
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rity will becane entrepreneurs.

Skilled workers, if changing, advance to entrepreneurs or em~
ployees, remain skilled workers or attain jobs as unskilled wor-
kers. The latter does not necessarily signify a worsening of their
{financial) situation, but always means, that they move to posi-
tions oufside their learned profession.

Careers of employees typically follow the pattern of permanent
advancement. It is nearly impossible, for an employee, to descend
to a minor position and the chance for advancement is fairly large.
The probability of becaming an entrepreneur increases with the
pesition held.

What has been said up to this point can be summarized as fol-
lows: There are two segments of labour market: one consists of
{blue collar) workers, the second of (white collar) emplovees, and
there is a narrow "one way" path from the first to the second sec-—
tor to be passed primarily by skilled workers.

The majority of entrepreneurs, who loose their positions, re-
enter labour force as unskilled workers, often a hard lot. But,
as we have seen above, the absolute frequency of such changes is
small.

Assisting activities (value 9 of the status-~variable) cccur
mainly within the agricultural sector of Austria's econcmy. There,
young pecple usually help their parents before they take possess—
ion of the farm or they leave home to became unskilled workers.
This movement ocut of the agricultural sector caused one of the
major changes in the Austrian society during the period after
World War IT.
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Finally we add a remark concerning state 10 (unknown). Times
spent for military service are recorded as unknown. Therefore the
probability of changing to state 10 is larger for states which are
likely to be held by the majority of younger people. It is suppos-—
ed that a larger portion returns to their former position after

service.

D. Effects of Education.

For the purposes of this section we have extracted from our
(sub-) sample 332 men, who have entered their occupational career
as employees with medium activities between 1950 and 1960. The
question to be asked is: does a person's education influence his
chance of advancing to a higher position at the first period of
his occupational career. We give an answer by using a competing
risks model, in particular we assess the effect of education on
cause specific hazard functions.

"Education” is taken as binary variable with outcames
1 for a person with university or AHS-degree

{college degree)
O otherwise, {56)

Table 7: Crosstabulation of education and second position.

Education:

O Low 1 High Total
Advancement 53 81 134
No advancement 47 28 75
Censored 73 50 123

Total 173 159 332
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Table 7 yives a crosstabulation of the two variables we are
interested in. A chi square test rejects the null hypothesis of
independence at the 1 % level.

Now, let t, be the sojourn time in the i-th person's first
' i . .
position and z, his education. We use the parametric proporti ocnal
i
hazards model

i .z 5=1,2 (57)
kj(ti;zi) oy t exp(BOj + Bl] z;) =1,
where j=1 for advancement and j=2 otherwise. Therefore, the cause
specific hazard rates for both causes stem fram a Weibull distri-
i . hazard
bution with shape parameters oy, ¢, respectively. The o i
function is strictly increasing, if the shape parameter is large
than 1, constant, if it is equal to 1 and strictly decreasing

otherwise.

The parameters of each cause specific hazard rate are estima-
ted by regarding all sojourn times terminated by the cther cause
as censored and maximizing the corresponding likelihood func—
tions. We have used GLIM and the method described in Aitkin and
Clayton (1980). The results are given in table 8.

Table 8: Estimates for the parameters of tfhe cause specific .
hazard rates, estimated asymptotic standard errors are
quoted within brackets.

Cause: .
Parameter Advancement No advancemen
a 1.2936 (0.0651) 0.99013  (0.0525)
p)
8 -4.197  (0.2145) -3.561 (0.1946)
Bo '
B 0.6165 (0.1767) -0.3335 (0.2387)
13
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As results from an analysis of deviance, the shape parameter
is significantly different from 1 for the advancement rate, which

is, therefore, strictly increasing. The corresponding null hypor-
thesis for the second rate cannot be rejected.

Using the asymptotic normal distribution of the parameter
estimates, one can test, that all the g-parameters besides 812
are different from 0. It follows in particular, that education
has a significant influence on the advancement hazard rate but
not on the no advancement hazard function.
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